

Bilkent University

Senior Design Project
Project short-name: QRDER

High Level Design Report

Mustafa Oğuz Güngör

Taylan Bartu Yoran

Mehmet Akif Kılıç

Supervisor: Varol Akman

Jury Members: Uğur Güdükbay, Fazlı Can

High Level Design Report
May 22, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

Introduction 4

Purpose of the System 5

Design Goals 6

Extensibility 6

Reliability 6

Usability 6

Accessibility 6

Portability 7

Efficiency 7

Definitions,Acronyms and Abbreviations 8

Overview 8

Current System Architecture 9

Proposed Software Architecture 10

Overview 10

Subsystem Decomposition 10

Hardware/Software Mapping 11

Persistent Data Management 12

Access Control and Security 13

Global Software Control 14

Boundary Conditions 16

Subsystem Services 16

Client 16

View Tier 17

Controller Tier 17

Model Tier 18

Administrative User 19

View Tier 20

Controller Tier 20

Model Tier 21

Server 22

Route Tier 23

2

Logic Tier 23

Data Tier 24

New Knowledge Acquired and Learning Strategies Used 24

References 24

3

1 Introduction

Comparing last decades, more people prefer eating outside rather than at home. Since

there may be many reasons [2] , it can be said making restaurants serve meals fast and

good has become harder. Since number of people who go to well known restaurants

increases, restaurant owners try to find a new ways to maintain quality of dishes and

restaurant. Since there are some knows standards [2] , it may be impossible to meet

those when restaurant is too crowded. Also, these standards are dependent to waiters /

waitresses. Finding a good waiter or making menu updated and well designed may be

costly. So , any owner that wants good service quality and make this sustainable must

pay big amounts of money. However, “Qrder” aims to make ordering and payment

online so that restaurants may focus on food quality rather than getting order and

checking the bill. The key idea behind the “Qrder” is make ordering, choosing the

meal , checking the bill and displaying the menu digital. So that, waiters will have

specific missions like delivering the meal instead of being responsible for any

mission. To sum up . Qrder automizes the order and payment process so that it will

reduce the workload of restaurants. For example, imagine yourself going a crowded

restaurant with your friends. You would waste a lot of time waiting for a water to

make an order or making payment. When that is the case, Qrder helps you in that

case. If you would make an order and payment by using 3 Qrder, you would not had

to waste time for ordering and payment. Furthermore, if restaurants let Qrder to be

used, their responsibility will be decreased. This application can be used for different

purpose. For example, a restaurant wants to change their menu design anytime they

want. For example, when they want to update the price of the meal , they can change

it instantly. Another example is changing order. When clients want to change/ cancel

the order, they can do it via Qrder. So, to sum up , Qrder let clients and restaurants to

4

changes their decisions instantly. In this report, analysis of the system will be

demonstrated. We will start by giving information about existing systems and their

scopes. Then, Qrder will be explained detailed and it’s highlighting features will be

demonstrated. After that, functional , nonfunctional and pseudo requirements will be

showed. So that, we will have an idea about scope of the application and technologies

that we might need. Then, system models and diagrams will be generated. Then,

possible scenarios will be produced to guess what may happen. Later that, screen

mock-ups and navigational paths will be created. Finally, social dimensions will be

considered.

1.1 Purpose of the System

Our system is not only for restaurant owners or customers. Since we want to make it

can be used for different aims and can be used by different types of users , our system

has several purposes.

First of all, our system tries to make everything faster for customers. Since ordering

and payment can be a very time consuming events in a crowded restaurant. Our app

aims to make things faster so that customers will do not have to waste their times.

Secondly, our system tries to provide a safe environment for restaurant owners. Since

order will be delivered through app, problems that are related to human factors will be

minimized. Furthermore, since customers can pay the check through app, our app aims

to make payment totally secure.

To sum up, our system aims to be powerful , fast , safe and interactive system.

5

1.2 Design Goals

In this section, Qrder’s design goals will be presented.

1.2.1 Extensibility

The system should:

● be easy to maintain

● be available on multiple platforms

1.2.2 Reliability

The system should:

● do not store any credit card information unless user states otherwise

● be prepared for any possible attacks. For example, whole information on the

database will be hashed.

● ensure that user’s data is safe.

● ensure that there will be no fake orders, restaurant or clients

1.2.3 Usability

The system should:

● be user friendly

● create options in terms of language and theme

● provide exact pictures of food and accurate info about meals

6

● work well with the diet program

1.2.4 Accessibility

The system should:

● be downloadable for free.

● be downloadable from the official website for the desktop version.

● be downloadable from the App Store or Google Play Store for the mobile

version.

1.2.5 Portability

The system should:

● run in any OS

● be able to work cross-platform

1.2.6 Efficiency

The system should:

● not lag when communicating with the server especially when in the restaurant has

many clients.

● be light

7

1.3 Definitions,Acronyms and Abbreviations

1.4 Overview

Qrder is a web application that makes ordering and payment online. Qrder is

innovative since there is no application that provides online ordering and payment.

Online ordering can be challenging because while client orders a meal through the

menu or pays the check, restaurant must be notified and these processes must be

handled flawlessly. On the other hand, when the restaurant makes the meal ready,

client must be notified. In addition, these orders must be kept in order with respect to

ordering time. In other words, this application works as first come first serve. Since

8

this application is a web based application, tools that we will use are Ruby, MySQL

and a web server. Furthermore, since network is crucial for this application, sub topic

“Computer Network” and terms that related to that such as sockets etc. will be used.

We hope that this application shows that good network , database and backend design

is the key for the good web based application. We think that there may be large

amounts of user that uses our application. To make our program accessible for

everyone, it will have to versions: desktop and mobile. In addition, it should run on

both IOS and Android. Desktop version will be used by the restaurant. On the other

hand, clients will prefer mobile version.

2 Current System Architecture

Since there are some systems that notifies clients when the meals are ready. There are

also some systems that provides digital menu for clients. However, there is no system

that make ordering, menu and payment. Furthermore , systems that are explained

above are hardware dependent and expensive. So, our application provides efficient

and cheap solution.

3 Proposed Software Architecture

3.1 Overview

Interactions and authorizations of endpoints in the QRDER system need to be defined

for more efficient/secure system architecture. Therefore, decomposition of each

subsystem should be analysed,their access control and architecture should be designed

in this manner. With this approach: decompositions, protocols will be used in

hardware/software levels, Data control and dependencies, Authorization and access

9

control and global software control subtopic will be analysed and designs for these sub

topics will be done for QRDER system.

3.2 Subsystem Decomposition

10

QRDER has a client-server subsystem decomposition as in the figure below. Both

mobile and administrative client subsystems are independent from each other, and only

dependent on the server subsystem.

Client subsystems are similar to each other, due to the similarity between the aim of

them. In both client sides, MVC (Model, View, Controller) design pattern is followed.

View of the client tier represents the UI part of the client apps that are mobile and

desktop. Controller of the client tier represents the management and business logic of

the apps. Model of the client tier represents the data models that are custom and DAO.

The communication from clients to the server tier is provided via a JavaScript library

called Axios that handles http responses and requests.

Server subsystem is the core of the project QRDER because every business logic of the

project is provided by it. Server is an instance of stateless server in order to increase

efficiency, reliability and stability because stateless servers do not handle session or

state specific data. Therefore, the outcome of these servers are only dependent on

business logic, not any state. Server tier provides apps management of the user,

restaurant, menu, item and order though by routes. Database is also handled by server

tier via an ORM (Object-relational mapping) tool. Server subsystem has 3 main tiers

that are Route, Logic and Data. Route tier handles routes and communication between

server and the apps. Logic tier handless all business logic of the project QRDER.

Authentication, token and other provided magements of the data is the part of the Logic

tier. Data tier is the bridge between Database and the apps via models that are provided

by an ORM tool.

11

3.3 Hardware/Software Mapping

There are two types of users in the proposed system of QRDER, which are

administrative users and customers. Administrative users will be using the system via

desktop application, where customers will be using the system via smartphones. Two of

these desired systems need small sizes of memory for caching techniques of the

libraries and APIs for connection and depiction properties. Internet connection and its

link are also other requirements to use the system. Smartphone applications for

customers will also require a camera to scan QR Stickers. If a recommendation system

is wanted to be used, then smartphones with GPS receivers will also be needed to get

location information of the user.AWS Cloud is planning to be used to design and

maintain the server side of the system[3].

All of the Components in the system will be implemented with JavaScript language,

where different frameworks will be included for each component. Reasons to choose

javaScript are:

● It is used in React framework for mobile application development,

● It is used in the Electron framework for desktop application development.

● Easy to use with relational databases.

● qrcode.react package for mobile application with QR Code Scanner.

● Can be used to implement HTTP connection and REST API.

Node.js runtime will be used to implement backend processes ,database integration

and usage for the server-side of the system[4]. As mentioned before, AWS Cloud will

be used to implement a backend server and will run on a linux operating system,due to

usability and efficiency in terms of speed of computations.

12

React framework will be used to implement customer application of client-side,

connection with REST API and QR Code decryption[5]. Easy-to-use render libraries,

qrcode library and integrability are the main reasons for the react framework to be

chosen. Electron framework will be used in administrative application of client-side

due to the same reasons, but it will be used to implement desktop application of the

client-side[6].

Relational databases will be used to achieve more reliable persistent data management

and to ease the maintenance of the system. REST API,Triggers and queries will be used

to provide information for different components and to set up communication[7].

It is required to transfer data for notifications,verifications and information towards

different components of the system. Priority for this transfer is reliability, efficiency

and maintainability. Therefore, HTTP and REST API can provide such aspects for the

network between components, therefore they will be used to set up communications

other than database related data.

13

3.4 Persistent Data Management

Database interactions and queries are the main underlying structure of the system.

There is no specific data that resides in memory of endpoints, only cache memory

exists in systems to acquire frequent requests faster. Therefore, persistent data consist

of relational database properties and is reached with queries. Triggers and updates will

be used in specific cases, but generally authorization of the client side will be

read-only. In addition to these, there will be REST API caching in endpoints.

14

3.5 Access Control and Security

QRDER system consists of different types of users with different authentications.

There are 3 types of users in the system which are :

● Administrative Client: Restaurant’s order management application.

● Customer Client: Customer’s smartphone app.

● Server Administrator/Developer: Server-side developers.

Clients will use HTTP to invoke any action in the system, and then verified action

will update the database. Clients will only access the database to get updated

data/information and monitor it. Server will use invocations and messages of clients to

update the database, so the server will be able to read and change the

database.Therefore, database access of the clients will be read-only access and server

access will be read and write.

Access of the customer client should be approved/verified by the administrative

client. Without approval/verification of the administrative client, customer client cant

establish the connection between the server and itself. Such access control is to prevent

abusive and unintended QR logins.

Access to update the database will be restricted for clients to ensure access control

and provide security for updating queries. However, communication between server

and clients will be done via HTTP and REST API which should be adjusted to a secure

form to make the system less vulnerable. Therefore, key encryption will be used for

two sides to encrypt information and to prevent unexpected messages to the server.

Symmetric encryption will be used for this mechanism.

Data privacy is another concern for the security aspect of the system. User

information and order history should be kept in the database to maintain such a system,

15

which may cause violation or doubt of violation of data privacy for clients. Therefore,

permission to contain such data will be asked from users in terms of use agreement.

This agreement will be prepared by considering GDPR[8].

3.6 Global Software Control

As it is mentioned before, abstraction of a system consists of 3 main parts which are

customer (Customer Client), restaurant(Administrative Client) and server. Control of

interactions between these 3 systems consists of 2 main phases which are monitoring

phase and connection phase. These interactions include communication between 3 parts

and queries from the database.

1. Monitoring Phase

Clients(customer & administrative) are in a steady phase when there is no request

that is sent and no response that is expected in endpoints. This steady phase is the

monitoring phase in which clients can monitor information according to the last

update that is done in the database. There is no interaction between endpoints untilla

request invocation is done. Basic read-only queries are done between the database and

clients in this phase.

2. Communication Phase

​When a customer invokes a request, the communication phase starts. In this phase, a

new request for adding/updating the database is sent from the client and the server

verifies this request before updating the database. Once verification/approval is done,

server updates database with its write-access to database and sends response to related

clients with success code.

a. Request Phase

16

Clients can send requests to the server via user interface to give or modify

orders. This phase can be done by both 2 clients where their header and data

information is different in the request message. Reason of these difference is

that request of administrative client does not need an approval and skips

approval phase in server where request of customer client need an approval

before processing/updating phase. Therefore,the request message includes the

type of the user, encrypted request text and encryption key.

b. Approval/Verification Phase

If a customer client sends a request in the request phase, the server sends a

request message to verify order or client to relative administrative client. This

process is done to avoid fake order and abusive use of the system. If

administrative client verify order in its response, then server can maintain for

processing/updating phase; otherwise, administrative client sends a message

with unverified code to server and order and request is removed from server

cache, then customer client is notified as unverified order.

c. Processing/updating Phase

​Once the server gets approval from the administrative client, start the

processing phase for decrypting messages that came from the customer client.

After ending decrypting and parsing the message, the server manages

demanded updates in the database.

d. Response Phase

If an error occurs in the processing/updating phase, the server notifies clients

with a response that has corresponding error code and aborts the process;

17

otherwise, it notifies clients with a response that has success code and the

demanded information in the message body.

3.7 Boundary Conditions

There are 4 main boundary conditions for the given system, which are initialization,

termination, restriction and failure. These conditions explain the system work space and

requirements, which are described in detail below.

Initialization

Clients should initialize the programs in their machines. For the initialization process,

programs should be downloaded to the machine. Set up after opening the program

requires connection which provides communication between server to maintain

services of the program. Local memory is only being used for caches, which also

requires a negligible amount of disk space in the machine.

Termination

After connection set up is done, programs should stand on to maintain connection

between end points. If programs are terminated, then communication closed and

initialization of connection should be done again to use the program. Disconnection

does not directly terminates communication, gives timeout instead. However, long

disconnection may occur in termination of the program as well.

Restriction

If use of program for a customer is restricted by server due to unauthorized login,

abusive use or verification problems, then program will not manage ordering meal and

prohibit user to use its services.

18

Failure

Unexpected errors in server side or communication network may cause failures ofr the

system. These failures will disable services of the system and block the use of the

system. There are 3 probable failures for the system:

● Disconnection: ​If users remains disconnected from server for a long time,

then connection setup,cookies and cache variables from both sides will be

removed and re-initialization will be needed.

● Server overload: ​If server encounters an intense connection traffic, then

scheduling or server processing may become bottleneck for the connection

which means unavailable services for a time period for users.

● Probable Bug occurrences: ​Mistakes in development phase that are not

determined in testing period may cause bugs in the run-time of the program

and can block the use of the services of the system.

19

4 Subsystem Services

4.1 Client

20

4.1.1 View Tier

View tier is the subsystem for UI components.

Class Description

Navigator This class provides a navigation system

to the app. It handles switches between

screens.

LoginScreen This class provides the login

components to the user.

RegistrationScreen This class provides the registration

components to the user.

HomeScreen This class provides special offers to the

user and also links to the other pages.

21

NearbyRestaurantsScreen This class provides users the restaurants

that are in the near, according to the

location of users.

OrderHistoryScreen This class provides users their own

order history.

QRScreen This class provides users to scan QR

codes that are provided by restaurants.

RestaurantMenuScreen This class provides users the menu of

the selected restaurant via scanner QR

code.

OrderScreen This class provides users management

of their orders.

PaymentScreen This class provides users to pay the

order.

22

4.1.2 Controller Tier

Controller tier is the subsystem in order to handle events, requests and responses.

Class Description

Container This class provides UI classes access to

local storage, connection with server,

private state and listening notification

service.

Storage This class provides access to the local

storage of the device. Any type of data

can be saved as an encrypted form.

API_Controller This class provides sending http

requests -get, post, put, delete- to the

server via 25 instance of Axios class.

23

NotificationController This is a singleton class that handles

notifications of the app

Axios This class belongs to third-party

package Axios and is able to send http

requests to a specified url and a port [9].

4.1.3 Model Tier

Model tier is the subsystem for Data elements in order to communicate easily and

reliably.

24

Class Description

Dao <<Interface>> Dao stands for Data Access Object and

isolates the layer of business from

relational databases by providing

abstract API [10].

RestaurantDao ~ ​Dao This class provides a Dao for

RestaurantModel class.

OrderDao ~ ​Dao This class provides a Dao for

OrderModel class.

Model <<Interface>> This interface provides get and set

methods.

UserModel ​~ Model This class provides a model of a User

object.

RestaurantModel ~ ​Model This class provides a model of a

Restaurant object.

MenuModel ~ ​Model This class provides a model of a Menu

object.

ItemModel ~ ​Model This class provides a model of an Item

object.

OrderModel ~ ​Model This class provides a model of an Order

object.

25

4.2 Administrative User

26

4.2.1 View Tier

View tier is the subsystem for UI components.

Class Description

Navigator This class provides a navigation system

to the app. It handles switches between

screens.

LoginScreen This class provides the login

components to the user.

RegistrationScreen This class provides the registration

components to the user.

HomeScreen This class provides tabs for the

management of the orders and tables.

27

OrdersDetailsScreen This class provides management of the

orders and details of them.

TableDetailsScreen This class provides management of the

tables and details of them.

MenuScreen This class provides restaurant owners

management of the restaurant menu.

SettingsScreen This class provides restaurant owners

specific settings.

4.2.2 Controller Tier

Controller tier is the subsystem in order to handle events, requests and responses.

28

Class Description

Container This class provides UI classes access to

local storage, connection with server,

private state and listening notification

service.

Storage This class provides access to the local

storage of the device. Any type of data

can be saved as an encrypted form.

API_Controller This class provides sending http

requests -get, post, put, delete- to the

server via 25 instance of Axios class.

NotificationController This is a singleton class that handles

notifications of the app

Axios This class belongs to third-party

package Axios and is able to send http

requests to a specified url and a port [9].

29

4.2.3 Model Tier

Model tier is the subsystem for Data elements in order to communicate easily and

reliably.

Class Description

Dao <<Interface>> Dao stands for Data Access Object and

isolates the layer of business from

relational databases by providing

abstract API [10].

ItemDao ~ ​Dao This class provides a Dao for

30

ItemModel class.

OrderDao ~ ​Dao This class provides a Dao for

OrderModel class.

Model <<Interface>> This interface provides get and set

methods.

UserModel ​~ Model This class provides a model of a User

object.

MenuModel ~ ​Model This class provides a model of a Menu

object.

ItemModel ~ ​Model This class provides a model of an Item

object.

OrderModel ~ ​Model This class provides a model of an Order

object.

31

4.3 Server

32

4.3.1 Route Tier

Route tier is the subsystem for Route elements in order to provide the concept of rest

api.

Class Description

Route <<Interface>> This class manages http requests that

are get, post, put and delete.

UserRoute ~ ​Route This class manages http requests to the

path is “/user/*”

OrderRoute ~ ​Route This class manages http requests to the

path is “/order/*”

RestaurantRoute ~ ​Route This class manages http requests to the

path is “/restaurant/*”

33

AuthRoute ~ ​Route This class manages http requests to the

path is “/auth/*”

RouteManager This class provides server management

of the routes.

4.3.2 Logic Tier

Logic tier is the subsystem for management elements in order to provide the business

logic.

34

Class Description

Manager <<Interface>> This interface creates a bridge with the

DatabaseManager class.

UserManager ~ ​Manager This class provides the business logic

for user operations.

OrderManager ~ ​Manager This class provides the business logic

for order operations.

RestaurantManager ~ ​Manager This class provides the business logic

for restaurant operations.

MenuManager ~ ​Manager This class provides the business logic

for menu operations.

ItemManager ~ ​Manager This class provides the business logic

for item operations.

AuthenticationManager ~ ​Manager This class provides the business logic

for authentication operations.

DatabaseManager This class provides control of SQL

database via GraphQL class.

Passport This class is provided by third-party

package PassportJS and generates

middlewares and authentication

protocols for the web service by

Express [11].

35

4.3.3 Data Tier

Model tier is the subsystem for Data elements in order to communicate easily and

reliably.

Class Description

DatabaseModel <<Interface>> This interface provides get and set

methods.

UserModel ~ ​DatabaseModel This class provides a model of the User

entity in the database.

RestaurantModel ~ ​DatabaseModel This class provides a model of the

Restaurant entity in the database.

36

MenuModel ~ ​DatabaseModel This class provides a model of the

Menu entity in the database.

ItemModel ~ ​DatabaseModel This class provides a model of the Item

entity in the database.

OrderModel ~ ​DatabaseModel This class provides a model of the

Order entity in the database.

TagModel ~ ​DatabaseModel This class provides a model of the Tag

entity in the database.

5 New Knowledge Acquired and Learning Strategies Used

Knowledge Acquired Learning Strategy Used

Relational Database Model Literature Review : Review from

Database System Concepts, A.

Silberschatz; H. Korth; S. Sudarshan,

2011/6th, McGraw-Hill

ORM (Object-relational mapping) Online Learning

Client-Server Architectures Literature Review: Review from

application layer topics of J.F. Kurose

and K.W. Ross, Computer Networking,

5th ed., Addison Wesley, 2010.

37

Scan/Create QRCode with

encryption/decryption in JS

Hands-on Experience

Electron, React frameworks Online Learning: Online researches are

done and

official online courses are covered.

JavaScript basics Online Learning: Online courses are

covered

Table: Knowledge Acquired and Learning Strategies Used

6 Glossary

AWS ​- ​Amazon Web Services

REST - ​Representational State Transfer

HTTP - Hyper-Text Transfer Protocol

JS - JavaScript

QR Code - Quick response code

GDPR - General Data Privacy Regulation

ORM - Object-relational mapping

38

7 References

[1] Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition, by

Bernd Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0.

[2] “Service Quality In Restaurants” ​Service Quality In Restaurants​,

https://www.ukessays.com/essays/marketing/service-quality-in-restaurants-marketing-es

say.php/. [Accessed: 21- May-2020].

[3] “Amazon Web Services (AWS) - Cloud Computing Services.” ​Amazon Web Services,

Inc.​, www.amazonaws.cn/en​/​. ​[Accessed​ : 20 -May -2020]

[4] Node.js. ​Node.js​, nodejs.org/en/.​ ​[Accessed​ : 18 -May -2020]

[5] “React – A JavaScript Library for Building User Interfaces.” ​– A JavaScript Library for

Building User Interfaces​, reactjs.org/.​ ​[Accessed​ : 18 -May -2020]

[6] “Build Cross-Platform Desktop Apps with JavaScript, HTML, and CSS.” ​Electron​,

www.electronjs.org/.​ ​[Accessed​ : 19 -May -2020]

[7] “What Is REST?” ​Codecademy​, www.codecademy.com/articles/what-is-rest.​ ​[Accessed

: 20 -May -2020]

[8] “General data privacy regulation.” https://eugdpr.org/. [Accessed: 21- May-2020].

[9] Axios. “Axios/Axios.” GitHub, 7 Mar. 2020, github.com/axios/axios

[10] Baeldung. “The DAO Pattern in Java.” Baeldung, 21 Mar. 2020,

www.baeldung.com/java-dao-pattern.

[11] “Passport.js.” Passport.js, www.passportjs.org​/.

39

http://www.amazonaws.cn/en/[Accessed

