

make

Bilkent University

Senior Design Project
Project short-name: QRDER

Analysis Report

Mustafa Oğuz Güngör

Taylan Bartu Yoran

Mehmet Akif Kılıç

Supervisor: Varol Akman

Jury Members: Uğur Güdükbay, Fazlı Can

Analysis Report
March 23, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of
the requirements of the Senior Design Project course CS491/2.

Contents

Introduction 3

Current System 4

Proposed System 5

Overview 5

Functional Requirements 6

Non-functional Requirements 7

Pseudo Requirements 9

System Models 11

Scenarios 11

Use-Case Model 21

Object and Class Model 22

Dynamic Models 29

User Interface 35

Other Analysis Elements 58

Consideration of Various Factors 58

Risks and Alternatives 60

Project Plan 61

Ensuring Proper Team-Work 66

Ethics and Professional Responsibilities 68

New Knowledge and Learning Strategies 69

Glossary 70

References 70

2

Analysis Report
Project Short-Name: Project Title

1 Introduction

Comparing last decades, more people prefer eating outside rather than at home. Since

there may be many reasons [1] , it can be said making restaurants serve meals fast and good

has become harder. Since number of people who go to well known restaurants increases,

restaurant owners try to find a new ways to maintain quality of dishes and restaurant. Since

there are some knows standards [2] , it may be impossible to meet those when restaurant is

too crowded. Also, these standards are dependent to waiters / waitresses.

Finding a good waiter or making menu updated and well designed may be costly. So ,

any owner that wants good service quality and make this sustainable must pay big amounts of

money. However, “Qrder” aims to make ordering and payment online so that restaurants may

focus on food quality rather than getting order and checking the bill.

The key idea behind the “Qrder” is make ordering, choosing the meal , checking the

bill and displaying the menu digital. So that, waiters will have specific missions like

delivering the meal instead of being responsible for any mission. To sum up . Qrder automizes

the order and payment process so that it will reduce the workload of restaurants.

For example, imagine yourself going a crowded restaurant with your friends. You

would waste a lot of time waiting for a water to make an order or making payment. When that

is the case, Qrder helps you in that case. If you would make an order and payment by using

3

Qrder, you would not had to waste time for ordering and payment. Furthermore, if restaurants

let Qrder to be used, their responsibility will be decreased.

This application can be used for different purpose. For example, a restaurant wants to

change their menu design anytime they want. For example, when they want to update the

price of the meal , they can change it instantly. Another example is changing order. When

clients want to change/ cancel the order, they can do it via Qrder. So, to sum up , Qrder let

clients and restaurants to changes their decisions instantly.

In this report, analysis of the system will be demonstrated. We will start by giving

information about existing systems and their scopes. Then, Qrder will be explained detailed

and it’s highlighting features will be demonstrated. After that, functional , nonfunctional and

pseudo requirements will be showed. So that, we will have an idea about scope of the

application and technologies that we might need. Then, system models and diagrams will be

generated. Then, possible scenarios will be produced to guess what may happen. Later that,

screen mock-ups and navigational paths will be created. Finally, social dimensions will be

considered.

2 Current System

Since there are some systems that notifies clients when the meals are ready. There are

also some systems that provides digital menu for clients. However, there is no system that

make ordering, menu and payment. Furthermore , systems that are explained above are

hardware dependent and expensive. So, our application provides efficient and cheap solution.

4

3 Proposed System

3.1 Overview

Qrder is a web application that makes ordering and payment online. Qrder is

innovative since there is no application that provides online ordering and payment. Online

ordering can be challenging because while client orders a meal through the menu or pays the

check, restaurant must be notified and these processes must be handled flawlessly. On the

other hand, when the restaurant makes the meal ready, client must be notified. In addition,

these orders must be kept in order with respect to ordering time. In other words, this

application works as first come first serve.

Since this application is a web based application, tools that we will use are Ruby,

MySQL and a web server. Furthermore, since network is crucial for this application, sub topic

“Computer Network” and terms that related to that such as sockets etc. will be used. We hope

that this application shows that good network , database and backend design is the key for the

good web based application.

We think that there may be large amounts of user that uses our application. To make

our program accessible for everyone, it will have to versions: desktop and mobile. In addition,

it should run on both IOS and Android. Desktop version will be used by the restaurant. On the

other hand, clients will prefer mobile version.

5

3.2 Functional Requirements

In this part, functional requirements will be discussed. If this requirements are

understood, system will be easier to understand. In addition to that, pseudo non-functional

requirements will be discussed too.

3.2.1 System Functionality

The system should:

● make register available for clients/restaurant.

● make a login system for clients/restaurants.

● gather info such as address , phone number and menu for restaurants.

● allow restaurants to create and alter their menu.

● show restaurants that is close to user.

● allow user to look for any restaurant that is close to s/he.

● show restaurants that meets the needs of the search.

● ask clients to scan the qr code.

● find corresponding restaurant that matches the qr code.

● display the corresponding menu.

● receive the order.

● inform restaurant about the order.

● calculates the check.

● inform user about the check.

● provide online payment.

● work interactively with the diet application.

● provide any interface about advertisements.

● display any special offer (if any)

6

3.2.2 User Functionality

The user should:

● register the system.

● provide required information while registering,

● login the system.

● scan the qr code.

● choose the meal that he/she wants among the menu.

● look for any restaurant that uses Qrder app by searching.

● make any change about the order.

● look and use for special offers.

● use diet program interactively.

● learn the nutrients of the meal.

● see the information about whole food that are displayed on the menu,

● change it’s profile.

● cancel the order

3.3 Non-functional Requirements

In this section nonfunctional requirements will be discussed. “​NON-FUNCTIONAL

REQUIREMENT (NFR) specifies the quality attribute of a software system. They judge the

software system based on Responsiveness, Usability, Security, Portability and other

non-functional standards that are critical to the success of the software system.”[3] . That’s

why, we spent a lot of time while thinking about nonfunctional requirements. Our subtopics

are extensibility , reliability , usability, accessibility, portability and efficiency,

7

3.3.1 Extensibility

The system should:

● be easy to maintain.

● be available on multiple platforms.

3.3.2 Reliability

The system should:

● do not store any credit card information unless the user state otherwise.

● be prepared for any possible attacks. For example, whole information on the database

will be hashed.

● ensure that user’s data is safe.

● ensure that there will be no fake orders , restaurants or clients.

3.3.3 Usability

The system should:

● be user friendly.

● create options in terms of language and theme.

● provide exact pictures of food and accurate info about meals.

● work well with the diet program.

3.3.4 Accessibility

The system should:

8

● be downloadable for free.

● be downloadable from the official website for the desktop version.

● be downloadable from the App Store or Google Play Store for the mobile

version.

3.3.5 Portability

The system should:

● run in any OS.

● be able to work cross-platform.

3.3.6 Efficiency

The system should:

● not lag when communicating with the server especially when in the restaurant

has many clients.

● be light.

3.4 Pseudo Requirements

3.4.1 Version Control System & Project Management

● GitHub will be used for version control for tracking changes.

9

● Code coverage will be enforced in the push action to Github by automatically

running a code formatter, a prettifier and tests before pushing. If any of them

fails, push will not be done.

● GitHub will also be used to create a Kanban style board for project

management. Sprints will be always up-to-date and jobs will be

self-contained to be able to have more detailed information about the process

of the implementation.

● Google Sheets will be used for tracking sprint points to be able to analyze

performance of the team.

3.4.2 Issue Tracking

● Firebase Crashlytics library in the Android app will be used for real-time

detailed crash reports.

● Loggly, Loglevel or more efficient library will be used for a logging system

to generate non-critical error logs. End of every session, these error logs will

be sent to a service and deleted from local storage of the user.

3.4.3 Target Platform & User Experience (UX)

● Business side must run on Windows and Linux.

● Client side must run on Android.

● Accessibility, flexibility and responsible User Interface (UI) must be

followed.

3.4.4 Testing

● Jest will be used as a JavaScript testing framework.

10

● All members must write their own tests for the assigned part to themselves.

● Alpha & Beta testing will be done by a chosen group of people from different

disciplines.

3.4.5 External Tools and Technologies

● Slack will be used for main communication as the chatting platform.

● Google Hangouts will be used for the online meetings.

● Google Docs will be used for future reports of the project.

● Zeplin will be used for creating a design flow and representing it.

● Adobe XD will be used to design User Interface (UI).

● Eslint & prettifier will be used for the code formatting and have a single-type

code.

3.5 System Models

In this part, we will show how our app makes things work during different

actions. This part is crucial for us because the way that how Qrder works is explained

in summary by giving highlighting operations.

3.5.1 Scenarios

11

Scenario 1

Use Case Name Register

Participating Actors Nathan & Restaurant A

Entry Conditions ● Application should be open and user
should not be logged in

Exit Conditions ● User either completes registration as
clicking register button or cancels it as
clicking cancel button

Main Flow Events User:
1. Should open the app
2. Clicks on Register button
3. Completes required areas
4. either click on register button to

complete registration or cancel button
to cancel it.

Scenario 2

Use Case Name Login

Participating Actors Nathan & Restaurant A

Entry Conditions ● Application should be open and user
should not be logged in

Exit Conditions ● User either fills required areas and
clicks login button

Main Flow Events User:
1. Opens the app
2. Completes required areas
3. clicks login button

12

Scenario 3

Use Case Name List Meals

Participating Actors Nathan

Entry Conditions ● QR Code of the table should be scanned

Exit Conditions ● User presses the “order” button to order
a meal or ”back” button to get back to
the main page.

Main Flow Events User:
1. login
2. scans the QR Code at the table of the

restaurant
3. presses “order” button

Scenario 4

Use Case Name Make order

Participating Actors Nathan

Entry Conditions ● Application should be open
● User should be logged in
● User should have scanned the QR code

on the table

Exit Conditions ● User either completes order as clicking
“done” button or cancels it as clicking
cancel button

Main Flow Events User:
1. Opens the app
2. login
3. scans the QR code
4. decides what to order from listed meals
5. either clicks on the “done” button to

complete the order or cancel button to
cancel it.

13

Scenario 5

Use Case Name Search Nearby Restaurants

Participating Actors Nathan

Entry Conditions ● Application should be open
● User should be logged in
● User should have allowed access to

location information before.

Exit Conditions ● User clicks “back” button

Main Flow Events User:
1. Opens the app
2. login
3. Clicks “Nearby Restaurants” button
4. allows access for location info
5. Click the “search” button.
6. Clicks “back” button when he/she is done.

Scenario 6

Use Case Name Call Waiter

Participating Actors Nathan

Entry Conditions ● QR Code of the table should be scanned
● user presses “call waiter” button

Exit Conditions ● User presses the “done” button to
cancel the call or to confirm the waiter
has come.

Main Flow Events User:
1. Scans the QR Code
2. presses call waiter button
3. says to waiter what he/she planned to

say
4. presses “done” button

14

Scenario 7

Use Case Name Payment

Participating Actors Nathan

Entry Conditions ● User should complete an order
● user presses “go to payment” button

Exit Conditions ● Restaurant confirms payment.

Main Flow Events User:
1. User makes his/her order
2. User get his/her order
3. User press “go to payment” button to

pay his/her meal
4. User completes payment
5. Restaurant confirms payment.

Scenario 8

Use Case Name Rate

Participating Actors Nathan

Entry Conditions ● User should complete the payment
● user presses “rate meal” button

Exit Conditions ● User presses the “done” button to finish
rating.

Main Flow Events 1. User completes payment
2. Restaurant confirms payment.
3. User presses the “rate” button.
4. User completes rating the meal and the

service.
5. User presses the “done” button.

15

Scenario 9

Use Case Name List Past Orders

Participating Actors Nathan

Entry Conditions ● Application should be open
● User should be logged in

Exit Conditions ● User presses the “back” button to go
back to the main page or presses the
“show” details” button for any specified
past orders in the list.

Main Flow Events User:
1. Opens the app
2. login
3. Clicks “List Past Orders” button
4. Clicks “back” button when he/she is

done or “show details” button for
specified order.

Scenario 10

Use Case Name Modify Order

Participating Actors Nathan

Entry Conditions ● user must have an existing order.

Exit Conditions ● user “back” button.
● user modifies the order

Main Flow Events 1. user chooses order to modify
2. user clicks “modify order”
3. user modifies the order
4. clicks “ modify order” button.

16

Scenario 11

Use Case Name Cancel Order

Participating Actors Nathan

Entry Conditions ● user already has an order.

Exit Conditions ● user clicks “back” button.
● user cancels the order.

Main Flow Events 1. clicks desired order to cancel.
2. clicks “cancel order” button.

Scenario 12

Use Case Name Check Order Status

Participating Actors Nathan

Entry Conditions ● user already has an order.

Exit Conditions ● clicks “back” button

Main Flow Events 1. chooses an order from order
list

2. clicks the desired order.
3. clicks “check order status”

button.

17

Scenario 13

Use Case Name Check Orders

Participating Actors Restaurant A

Entry Conditions ● application must be open.
● restaurant must be logged in

Exit Conditions ● clicks “back” button

Main Flow Events 1. clicks “Check Orders” button.

Scenario 14

Use Case Name Modify Order

Participating Actors Restaurant A

Entry Conditions ● application must be open.
● restaurant must be logged in
● client must have an order

Exit Conditions ● clicks “back” button.
● clicks “done” button.

Main Flow Events 1. clicks “show orders” button.
2. Finds desired order.
3. Clicks “edit order” button.

18

Scenario 15

Use Case Name Show Table Detail

Participating Actors Restaurant A

Entry Conditions ● application must be open.
● restaurant must be logged in

Exit Conditions ● clicks “back” button.

Main Flow Events 1. Clicks desired table on the main page.

Scenario 16

Use Case Name Notify Client

Participating Actors Restaurant A

Entry Conditions ● application must be open.
● restaurant must be logged in
● order must be ready

Exit Conditions ● clicks “back” button.

Main Flow Events 1. clicks desired order.
2. clicks “ notify client” button.

19

Scenario 17

Use Case Name get payment

Participating Actors Restaurant A

Entry Conditions ● application must be open.
● restaurant must be logged in
● client must ready to pay

Exit Conditions ● clicks “tick” button.

Main Flow Events 1. clicks “ticks” button to get payment.
2. assign someone to get money.

20

3.5.2 Use-Case Model

In this part, use case will be introduced. This methodology is used to identify,

visualize and clarify system requirements. By looking that diagram, you may understand who

does what and interactions between actors like server , client and restaurant.

21

3.5.3 Object and Class Model

Class Diagram for Server Side

22

Class Description

Controller This class handles server status and requests
via REST API concept. It uses middleware
for security, flexibility and efficiency. It
distributes requests to the instances of Route
class, according to the request path.

Express This class is provided by third-party
package ExpressJS and creates a web
framework or web service in the NodeJS
environment [5].

Logger This class manages logging of server-side.

TokenManager This class generates, renews and validates
JWT tokens via constant secret key.

Route <<Interface>> This class manages http requests that are
get, post, put and delete.

UserRoute ~ ​Route This class manages http requests to the path
is “/user/*”

OrderRoute ~ ​Route This class manages http requests to the path
is “/order/*”

RestaurantRoute ~ ​Route This class manages http requests to the path
is “/restaurant/*”

AuthRoute ~ ​Route This class manages http requests to the path
is “/auth/*”

Manager <<Interface>> This interface creates a bridge with the
DatabaseManager class.

UserManager ~ ​Manager This class provides the business logic for
user operations.

OrderManager ~ ​Manager This class provides the business logic for
order operations.

RestaurantManager ~ ​Manager This class provides the business logic for
restaurant operations.

MenuManager ~ ​Manager This class provides the business logic for
menu operations.

ItemManager ~ ​Manager This class provides the business logic for
item operations.

AuthenticationManager ~ ​Manager This class provides the business logic for
authentication operations.

23

AuthUserModel This class is a model for authenticated users
from client side and business side.

Passport This class is provided by third-party
package PassportJS and generates
middlewares and authentication protocols
for the web service by Express [3].

DatabaseManager This class provides control of SQL database
via GraphQL class.

GraphQL This class is provided by third-party
package GraphQL and controller for a
database [4].

DatabaseModel <<Interface>> This interface provides get and set methods.

UserModel ~ ​DatabaseModel This class provides a model of the User
entity in the database.

RestaurantModel ~ ​DatabaseModel This class provides a model of the
Restaurant entity in the database.

MenuModel ~ ​DatabaseModel This class provides a model of the Menu
entity in the database.

ItemModel ~ ​DatabaseModel This class provides a model of the Item
entity in the database.

OrderModel ~ ​DatabaseModel This class provides a model of the Order
entity in the database.

TagModel ~ ​DatabaseModel This class provides a model of the Tag
entity in the database.

TagEnum <<enumeration>> This enum provides tags of items and is
initialized dynamically.

24

Class Diagram for Client Side (Mobile App)

Class Description

Container This class provides UI classes access to
local storage, connection with server,
private state and listening notification
service.

Storage This class provides access to the local
storage of the device. Any type of data can
be saved as an encrypted form.

NotificationController This is a singleton class that handles
notifications of the app.

API_Controller This class provides sending http requests
-get, post, put, delete- to the server via

25

instance of Axios class.

Axios This class belongs to third-party package
Axios and is able to send http requests to a
specified url and a port [6].

Dao <<Interface>> Dao stands for Data Access Object and
isolates the layer of business from relational
databases by providing abstract API [2].

RestaurantDao ~ ​Dao This class provides a Dao for
RestaurantModel class.

OrderDao ~ ​Dao This class provides a Dao for OrderModel
class.

Model <<Interface>> This interface provides get and set methods.

UserModel ​~ Model This class provides a model of a User
object.

RestaurantModel ~ ​Model This class provides a model of a Restaurant
object.

MenuModel ~ ​Model This class provides a model of a Menu
object.

ItemModel ~ ​Model This class provides a model of an Item
object.

OrderModel ~ ​Model This class provides a model of an Order
object.

TagEnum <<enumeration>> This enum provides tags of items and is
initialized dynamically.

26

Class Diagram for Business Side (Desktop App)

Class Description

Container This class provides UI classes access to
local storage, connection with server,
private state and listening notification
service.

Storage This class provides access to the local
storage of the device. Any type of data can
be saved as an encrypted form.

NotificationController This is a singleton class that handles
notifications of the app.

API_Controller This class provides sending http requests
-get, post, put, delete- to the server via

27

instance of Axios class.

Axios This class belongs to third-party package
Axios and is able to send http requests to a
specified url and a port [6].

Dao <<Interface>> Dao stands for Data Access Object and
isolates the layer of business from relational
databases by providing abstract API [2].

ItemDao ~ ​Dao This class provides a Dao for ItemModel
class.

OrderDao ~ ​Dao This class provides a Dao for OrderModel
class.

Model <<Interface>> This interface provides get and set methods.

UserModel ​~ Model This class provides a model of a User
object.

MenuModel ~ ​Model This class provides a model of a Menu
object.

ItemModel ~ ​Model This class provides a model of an Item
object.

OrderModel ~ ​Model This class provides a model of an Order
object.

TagEnum <<enumeration>> This enum provides tags of items and is
initialized dynamically.

28

3.5.4 Dynamic Models

Sequence Diagrams

Sequence diagrams show how things work in an application. Unlike use case

diagrams and scenarios it shows interactions between objects and functions.

Main Menu Options for Client Side

This sequence illustrates that how Nathan loops inside main page by choosing

several options such as show nearby restaurants , wallet and edit profile.

29

Scanning QR, Registering a Table and Getting a Menu for Client Side

This sequence shows that what is happening when Nathan comes to the

restaurant and getting a menu by scanning the QR code.

Creating, Updating and Showing Order for Client Side

This diagram illustrates interactions between objects when Nathan wants to

create or update an order or when he needs to see the status of the order.

30

Order Operations for Business Side

In this diagram, operations on the order that is applied by business side is

shown.

31

Table Operations for Business Side

This diagram shows which objects interact with each other in which way to

make an operation on a table that is assigned to a specific restaurant.

32

Order Control for Business Side

This diagram shows how order is controlled.

Client Side Activity Diagram

In addition to the sequence diagrams, main flow of the client side application

is shown in the Activity diagram below.This diagram shows the main flow of events

in clients side, instead of specific flow of events.Entry point is the login of the client

to the application, and exit point is the payment in diagram.

33

34

Business Side Activity Diagram

Main flow for the business side of the the program is shown below. There is

main flow of the program after initialization. Entry point is the point that user login to

the program. There is no exit point because business side is kept open . Logout may

be exit conditions but it is not resides in the main flow.

3.5.5 User Interface

User Interface mockups are shown in this topic. There are user client and

administrative clients subtopics for both sides of the program. Administrative side is a

35

desktop application so it it shown in a desktop monitor, where client side is a mobile

application so it is shown in mobile phone screen.

3.5.5.1 User Client

3.5.5.1.1 Login Page

First screen that is seen when the application is opened by a user. There are 2

input areas that are expected to be filled by the user with correct identity

information to use the program with specified authorization. If the user did not

register yet, he/she should register by clicking the sign up button and be directed

to the registration page. If a user forgets his/her password, he/she should click the

forgot password button to get his/her new password to his/her specified email

address. If a user has already registered, he/she can login to use the program after

filling required input areas.

Login page (1.1)

36

3.5.5.1.2 Sign up Page

Sign up Page can be directed from the login page. Users should use Sign up

Page to register the system. Name, surname, email and password are the required

areas to register; where phone number,birth date, job and gender are the areas that

are requested just for creating statistics and providing recommendations for users.

Therefore, these areas do not have to be filled. Once a user completes to required

areas, he/she can login with his/her email and password that he/she used in

registration.

Sign Up page (1.2)

37

3.5.5.1.3 Main Page

The Main Page is the first page that is seen after the login. At the top, the

logo and the catchy motto of the application is seen. Under it, there is a slide menu

which shows the special offers of restaurants that the user went to before. In the

footer panel, there is a button in the shape of a QR Code. Users should press it to

be directed to the QR reader page. There is also a navigation menu for preferences.

Main page - 1 (1.3)

38

When the user scans the QR Code in the table, the QR button is replaced by a basket

button. Users can be directed to the Order Page by clicking it whenever they want. This

button appears and is enabled only after the user scans the QR code and changes back to QR

button after payment is done.

Main page - 2 (1.4)

39

When complete ordering, A plate-cover icon appears next to the basket button. This

icon shows the status of order.

Yellow Hourglass: ​It means order has been sent to the database and directed to the

restaurant, waiting for confirmation of the restaurant account.

Red Fire: ​It means order has been confirmed by restaurant account and is being

prepared to be served.

Yellow Check: ​It means Order is stated as ready by restaurant account and expected

to be served soon.

When the serving of the meal is done, the waiter reminds you to press the plate-cover

icon to confirm the meal is served. Once the plate-cover icon is pressed, it disappears until a

new order is given.

Main page - Order status: Waiting (1.5.1)

40

Users can use the nav menu to use preferences. Preferences are:

Wallet: ​Redirects user to Wallet Page to edit his card info or to do payment.

Nearby Restaurants: ​Asks permission for location information and redirects user to the

Nearby Restaurants Page.

Past Orders: ​Redirects user to Past Orders Page where user can see his/her order history.

Edit Profile: ​Redirects user to edit profile page, which is the same with register page.

How to Use: ​Redirects user to internet page of application to inform him/her about use.

Notifications: ​Shows restaurant announcements as pop-ups.

Navbar (1.6)

41

3.5.5.1.4 Nearby Restaurants Page

Once the “Nearby Restaurants” button is pressed, the application asks for

permission to get location information. User can see nearby restaurants that use

QRDER system and their intensity(empty tables, number of clients/orders etc.).

Nearby Restaurants page (1.7)

42

3.5.5.1.5 Past Orders Page

Users can see their past orders on this page. Also comments and rating can be

attached to past orders and meals that were ordered before. User can get price,date

and description information of past orders.

Past Orders page (1.8)

43

3.5.5.1.6 QR Reader Page

User scans the QR Code to see the meal list and orders some meals. Once a

user clicks the QR button in the main Page, QR Reader Screen below appears and

expects a QR Code to be scanned by the user. When QR Code on the restaurant

table is scanned, the user sees the meal menu and can order something.

QR Reader page (1.9)

44

3.5.5.1.7 Meal Menu Page

When the QR Code on the table of the restaurant is scanned by the user on

QR Reader Page, the menu of the restaurant appears on the phone screen like the

one is shown below. Users can specify their order by adding his offers from the

menu on this page. Users also can call a waiter by using the button on the

right-down corner of the page for any other request.

Menu page (1.10)

45

3.5.5.1.8 Order Page

Order page shows the orders of the users. When users click the “done”

button, order is sent to the database and the restaurant will be aware of the order.

Users can order something new by clicking the “Continue Ordering” button.

Payment button should be used when the user finishes his meal and decides to pay

and leave. All orders and Order page can be accessed until the payment is done.

Order page (1.11.1)

46

Payment Options

When the payment button is clicked, payment options are shown in a pop-up screen

which is shown in the figure below. Users can pay normally with selecting “Check, Please!”

option or can pay online with selecting “online payment” option and specifying their wallet.

Order page - Payment options (1.11.2)

47

3.5.5.1.9 Online Payment Page

To use:

● Online payment by specifying a credit card,

● Transfering money to the account of the application to do quick payment(like

sodexo).

Online Payment page (1.12)

48

3.5.5.2 Administrative(Restaurant) Client

3.5.5.2.1 Login Screen

First screen that is seen when the application is opened by a user. There are 2

input areas that are expected to be filled by the user with correct identity

information to use the program with specified authorization. If the user did not

register yet, he/she should register by clicking the sign up button and be directed

to the Web page of the system. If a restaurant wants to use this system, owner of

the restaurant should contact with QRDER HR and demands the set up for the

restaurant. This setup includes authorization, synchronisation of tables with QR

Stickers and Registration for program.If a user forgets his/her password, he/she

should click the forgot password button to get his/her new password to his/her

specified email address. If a user has already registered, he/she can login to use the

program after filling required input areas.

Login Page(2.1)

49

3.5.5.2.2 Main Screen

Main Screen of the administrative client composed of 2 main screen tabs,

tables and the orders.On the left-upper corner, there are profile edit settings and

log out buttons. Right of the User panel, There is the “Current Menu” panel, which

can be pressed to go to the “Modify Menu” screen. On the right-upper corner of

the screen,there is a statistics panel which shows the number of the corresponding

information as it is told below.

: Number of tables with delivered order

: Number of tables that waits payment

: Number of tables that waits waiter

: Number of tables that waits their order to be served

: Button with specified profile picture to show profile information

: Settings button to arrange scaling and color settings of the UI

: Edit button to edit profile informations

 : Logout Button

50

Tables Tab

Tables tab shows the status of the tables and the orders belong to them in the

restaurant. Colors of the tables are getting warmer to notify restaurant employers

as the wait time increases. Icons attached to the table are also getting bigger as

wait time increases.

● Red scaled colors are specified for tables that wait orders.

● Purple is specified for tables that wait waiter

● Blue is specified for tables that are delivered with their orders.

● Green is specified for tables that wait for payment

Table Detail/Modification Screen can be redirected by clicking on any table

to modify orders of the specified table.

Main Page-Tables Screen(2.2.1)

51

Orders Tab

Order tabs show all orders that exist for currently occupied tables in the

restaurant. One table can have more than one order. Orders shown in descending

order respect to wait time. There are edit and show details buttons for each order

in the list. Show details button is being used to be redirected to Order Detail/Status

Screen for order that corresponds to clicked button. Edit button redirects to

Modify Order Screen. Icons correspond to situations that are mentioned in

previous parts.

Main Page-Orders Screen(2.2.2)

52

3.5.5.2.3 Order Detail/Status Screen

Status and contents of the order can be modified on this screen. If payment

for a corresponding order is done normally, then the employer of the restaurant

clicks the “payment is done” button. If the order is served to the customer, then the

“meal served” button should be clicked. After the waiter visited the calling table,

the ”waiter arrived” button should be clicked. Edit order button redirects the

screen to the Modify Order Screen where new orders can be added or current

orders can be removed.

Order Detail/Status Screen(2.3)

53

3.5.5.2.4 Table Detail/Modification Screen

Edit and Details buttons make the same redirections with the orders tab. This

screen only lists the orders of specified tables.There is an additional “Add New

Order” button to add orders manually to the table. This service provides currently

used order tracking system for restaurants, so that the customers that do not use

the QRDER can also be served by the restaurant. “Add New Order” button

redirects to “Create Order Screen''.

Table Detail/Modification Screen(2.4)

54

3.5.5.2.5 Create Order Screen

Create order screen is used to create orders normally. Waiter gets the order

from the customer and saves it via this interface. When the “add new order” button

is clicked, the system creates a new order with a new order number and order id in

the database and shows its details to employers of the restaurant to specify orders

manually.

Create Order Screen(2.5)

55

3.5.5.2.6 Modify Order Screen

Same functionality with “Create Order Screen”, this screen is used to modify

existing orders​. New orders can not be created via this interface, only existing

ones can be modified.

Modify Order Screen(2.6)

56

3.5.5.2.7 Create/Modify Menu Screen

Current meal menu can be modified through this interface. New meals can be

added to the meal list or existing ones can be removed from the list. Restaurants

can also arrange Fonts and styles from existing ones or upload new assets to create

more interesting designs. To strengthen the menu design, restaurant can specify

the cover and background images of the menu. “>>” button inside the preview

panel is used to show the preview version of the menu before saving it. After all

modifications are done, the restaurant can update the menu by pressing the “save”

button to save the arrangements in the database.

Create/Modify Menu Screen(2.7)

57

4 Other Analysis Elements

In this part of the report, dimension and possible risk that may be encountered will be

discussed.

4.1 Consideration of Various Factors

There are some factors that needs to be considered may affect our project. Below,

brief discussion about these factors can be seen.

Public Health

We think that Qrder has no positive or negative effect on public health. For clients,

these app will be used only when they are hungry and when they want to eat out instead of

their home. So, this app will not require high amount of time to be used accurately. Therefore,

this app will not affect any client. For restaurant, nearly whole of them use a system that

tracks orders, therefore our app will not create any confusion for workers. Furthermore, since

it is simple it will make the work easier for them. So, it can be said that people who use Qrder

will not face any positive or negative effect since it is an application that can be used only

when needed. In other words, unlike social media, it will not have an effect on daily life.

People will not be obsessed with it. So, in addition tho physical health psychological health

will not be affected.

Public Safety

When in comes to public safety, the most important thing that needs to be considered

is online payment. Qrder provides online payment system, but it will not store the credit card

information of the users on the database. Furthermore, online payment service will be done by

3rd party companies since there are regulations and it is safer for the clients. Another thing is

58

users and restaurants will have profiles, therefore Qrder will keep them safe. To keep them

safe, whole information will be hashed and will not be published to any company or person.

Public Welfare

Qrder will be free to download and free to use. In addition, there will not be paid services. So

any person that has a mobile phone that is connected to internet or any restaurant that has a

desktop can use Qrder freely. Then, it can be said that Qrder will not discriminate any group

or company with respect to their budget. In other words, anyone wants to use Qrder can use it.

Therefore, Qrder has nothing to do with the context of public welfare.

Global Factors

There are world wide regulations that needs to be followed by any web based

application. Qrder will strictly follow these regulations. For example, it will not do any

operation on user’s personal information as GDPR stated. [9]. In addition to that, Qrder will

also strictly follow the security protocols for any network operation especially for online

payment. To sum up, Qrder will not cross any boundary that is drawn by regulations that

every country has an agreement on it.

Cultural Factors

Since each culture has distinct dishes, we know that we may encounter different

menu, interface and restaurant design . That’s why, to make Qrder be applicable for whole

cultures, instead of using standard menu and restaurant layout design, we will let restaurants

to create and change their designs. By doing that, we purpose that any restaurant owner that

wants to use Qrder can use it without doubting about losing their local features. Then, a

restaurant owners who work in touristic places can introduce their food culture to tourists that

use Qrder in a digital way. Furthermore, menu will support different language models, so

59

Qrder will minimize the risk of communication problems . On other hand it will support to

show local features of the restaurants.

Social Factors

We cannot find any social factor that is related to Qrder. Since any person can use

Qrder, Qrder has nothing to do with terms like age , gender , race etc. That’s why, we can say

that social factors are not applicable for Qrder.

4.2 Risks and Alternatives

Before implementing Qrder, we considered some possible risks. After that, we

thought about effects of risks on Qrder then we created B plans with respect to that. These B

plans will be executed in case of risk that will be explained below occurs.

1. Unsatisfactory Server Performance

Since servers will be busy when the restaurants are crowded, the servers must remain

functional. Therefore , if we realize that currents systems are not good enough to provide a

full support for clients, we will just find a new ones that is better equipped.

2. Infeasible Server Cost

Better quipped server is a good choice obviously, but it must not exceed the economic

threshold that will be determined. Then, if price of the server is too high, then making some

operations on local computer’s instead of server can be considered.

60

3. One of Team Members Leaving

Since this project is handled by 3 people, there is a high risk that if one of them

leaves. If it happens, to make loss tolerable, we purpose that each member has a knowledge

about any part of project. We have an equal workload among participant and in case of

leaving, others can share the leaving one’s workload equally. Since they will know what he

has been working for , they can easily adapt to new and extra responsibility. So , the loss will

be tolerable.

4.3 Project Plan

WP # Work package title Leader Members involved
WP 1 Project Specification Akif Oğuz, Taylan
WP 2 Analysis Report Oğuz Akif, Taylan
WP 3 High-Level Design Report Taylan Akif, Oğuz
WP 4 Low-Level Design Report Akif Oğuz, Taylan
WP 5 Final Report Oğuz Akif, Taylan
WP 6 Presentations & Demonstrations Oğuz Akif, Taylan
WP 7 Web Site Taylan Akif, Oğuz
WP 8 Client Side Taylan Akif, Oğuz
WP 9 Business Side Oğuz Akif, Taylan
WP 10 Server Side Akif Oğuz, Taylan
WP 11 Database Akif Oğuz, Taylan
WP 12 Deployment Oğuz Akif, Taylan
WP 13 Web Service Management Taylan Akif, Oğuz
WP 14 Design Akif Oğuz, Taylan
WP 15 Project Management Taylan Akif, Oğuz

WP 1:​ Project Specifications
Start date: ​17 February 2020​ ​End date:​ ​24 February 2020
Leader: Akif Members involved: Oğuz, Taylan
Objectives:​ ​The initial requirements are defined for the project.
Tasks:
Task 1.1​ ​Introduction
Task 1.2​ ​Description
Task 1.3​ ​Constraints
Task 1.4​ ​Professional and Ethical Issues
Task 1.5​ ​Requirements
Deliverables
D1.1:​ ​Project Specifications
WP 2:​ ​Analysis Report

61

Start date: ​16 March 2020​ ​End date:​ ​23 March 2020
Leader: Oğuz Members involved: Akif, Taylan
Objectives: ​The analysis report contains a detailed analysis of the problem. It should
address all relevant issues.
Tasks:
Task 2.1. Introduction
Task 2.2. Current System (if any)
Task 2.3. Proposed System
Task 2.3.1 Overview
Task 2.3.2 Functional Requirements
Task 2.3.3 Nonfunctional Requirements
Task 2.3.4 Pseudo Requirements
Task 2.3.5 System Models
Task 2.3.5.1 Scenarios
Task 2.3.5.2 Use Case Model
Task 2.3.5.3 Object and Class Model
Task 2.3.5.4 Dynamic Models
Task 2.3.5.5 User Interface - Navigational Paths and Screen Mock-ups
Task 2.4. Other Analysis Elements
Task 2.4.1. Consideration of Various Factors
Task 2.4.2. Risks and Alternatives
Task 2.4.3. Project Plan
Task 2.4.4. Ensuring Proper Team-work
Task 2.4.5. Ethics and Professional Responsibilities
Task 2.4.6. New Knowledge and Learning Strategies
Task 2.5. Glossary
Deliverables
D2.1:​ ​Analysis Report
WP 3:​ High-Level Design Report
Start date: ​1 May 2020​ ​End date:​ ​15 May 2020
Leader: Taylan Members involved: Akif, Oğuz
Objectives: ​High-level or system design is the transportation of the analysis model into a
system design model.
Tasks:
Task 3.1. Introduction
Task 3.1.1 Purpose of the system
Task 3.1.2 Design goals
Task 3.1.3 Definitions, acronyms, and abbreviations
Task 3.1.4 Overview
Task 3.2. Current software architecture (if any)
Task 3.3. Proposed software architecture
Task 3.3.1 Overview
Task 3.3.2 Subsystem decomposition
Task 3.3.3 Hardware/software mapping
Task 3.3.4 Persistent data management
Task 3.3.5 Access control and security
Task 3.3.6 Global software control
Task 3.3.7 Boundary conditions
Task 3.4. Subsystem services
Task 3.5. New Knowledge Acquired and Learning Strategies Used
Task 3.6. Glossary

62

Deliverables
D3.1:​ ​High-Level Design Report
WP 4:​ Low-Level Design Report
Start date: ​25 September 2020​ ​End date:​ ​5 October 2020
Leader: Akif Members involved: Oğuz, Taylan
Objectives: Extent and validity of the design principles that were used to carry out this
phase of the project must be explained in detail. Also, creativity, that is the extent to which
the team developed a novel solution to the design problem while still achieving a
functional design, at the low-level design phase, must be clear.
Tasks:
Task 4.1. Introduction
Task 4.1.1 Object design trade-offs
Task 4.1.2 Interface documentation guidelines
Task 4.1.3 Engineering standards (e.g., UML and IEEE)
Task 4.1.4 Definitions, acronyms, and abbreviations
Task 4.2. Packages
Task 4.3. Class Interfaces
Task 4.4. Glossary
Deliverables
D4.1:​ ​Low-Level Design Report
WP 5:​ Final Report
Start date: ​5 December​ ​End date:​ ​17 December 2020
Leader: Oğuz Members involved: Akif, Taylan
Objectives: ​The final report is the culmination of the project. The final architecture and
design of the system as well as the final status of the project is presented in this report.
Tasks:
Task 5.1. Introduction
Task 5.2. Requirements Details
Task 5.4. Final Architecture and Design Details
Task 5.5. Development/Implementation Details
Task 5.6. Testing Details
Task 5.7. Maintenance Plan and Details
Task 5.8. Other Project Elements
Task 5.8.1.Consideration of Various Factors
Task 5.8.2.Ethics and Professional Responsibilities
Task 5.8.3.Judgements and Impacts to Various Contexts
Task 5.8.4 Teamwork and Peer Contribution
Task 5.8.5 Project Plan Observed and Objectives Met
Task 5.8.6 New Knowledge Acquired and Learning Strategies Used
Task 5.9. Conclusion and Future Work
Task 5.10. Glossary
Deliverables
D5.1:​ ​Final Report
WP 6:​ Presentations & Demonstrations
Start date: ​5 December 2020​ ​End date:​ ​21 December 2020
Leader: Oğuz Members involved: Akif, Taylan
Objectives:​ ​Presentation of the project.
Tasks:
Task 6.1​ ​Presentation
Task 6.2​ ​Demo

63

Deliverables
D6.1:​ ​Presentations & Demonstrations
WP 7:​ Website
Start date: ​20 February 2020​ ​End date:​ ​1 December 2020
Leader: Taylan Members involved: Akif, Oğuz
Objectives:​ ​The website of the project.
Tasks:
Task 7.1​ ​Design
Task 7.2​ ​Implementation
Deliverables
D7.1:​ ​Website
WP 8:​ Client Side
Start date: ​15 May 2020​ ​End date:​ ​1 December 2020
Leader: Taylan Members involved: Akif, Oğuz
Objectives:​ ​A mobile app that provides functionality and accessibility to customers.
Tasks:
Task 8.1 ​Storage ​: ​Connection between local storage of the device and the app. Files will
be encrypted while saving and will be decrypted while loading for data security.
Task 8.2​ ​API Connection​: ​Connection between the app and server via REST API.
Task 8.3​ ​Model​: ​Data structures for the objects received from the server.
Task 8.4​ ​View ​: ​User Interface part of the app.
Task 8.5 ​Controller​: ​Controller part of the app. This part is contained inside of the View
part.
Task 8.6​ ​Test ​: ​Code coverage and testing.
Deliverables
D8.1:​ ​Qrder App (Android)
WP 9:​ Business Side
Start date: ​20 February 2020​ ​End date:​ ​1 December 2020
Leader: Oğuz Members involved: Akif, Taylan
Objectives:​ ​<briefly explain the objectives of this work package (3-5 sentences) >
Tasks:
Task 9.1 ​Storage ​: ​Connection between local storage of the device and the app. Files will
be encrypted while saving and will be decrypted while loading for data security.
Task 9.2​ ​API Connection​: ​Connection between the app and server via REST API.
Task 9.3​ ​Model​: ​Data structures for the objects received from the server.
Task 9.4​ ​View ​: ​User Interface part of the app.
Task 9.5 ​Controller​: ​Controller part of the app. This part is contained inside of the View
part.
Task 9.6​ ​Test ​: ​Code coverage and testing.
Deliverables
D9.1:​ ​Qrder Business App (Desktop)
WP 10:​ Server Side
Start date: ​20 February 2020​ ​End date:​ ​1 December 2020
Leader: Akif Members involved: Oğuz, Taylan
Objectives: ​Server side of the project and provides database connection, authentication
and service controls.
Tasks:
Task 10.1 ​REST API Handler ​: ​Handles requests and responses via REST API.
Interpreters and middlewares provide request security and response structure.
Task 10.2​ ​Services ​: ​Subrequest handler and controller for database.

64

Task 10.3​ ​Database Controller ​: ​Managing database/s connection and queries.
Task 10.4​ ​Model ​: ​Data structuıres for the entities in the database.
Task 10.5​ ​Authentication ​: ​Request authentication and session handler via JWT
Task 10.6​ ​Test ​: ​Code coverage and testing.
Deliverables
D10.1:​ ​Web service (NodeJS)
WP 11:​ Database
Start date: ​20 February 2020​ ​End date:​ ​1 November 2020
Leader: Akif Members involved: Oğuz, Taylan
Objectives:​ ​Database/s of the project.
Tasks:
Task 11.1 ​Decision ​: ​Choosing type of the SQL database and decision about whether
NO-SQL database would be used.
Task 11.2​ ​Diagram ​: ​Creating structures and schemas for the database.
Task 11.3 ​Setup & Build ​: ​Setup and building database. Creating scripts for server side
database connection via dummy data.
Deliverables
D11.1:​ ​Database
D11.2:​ ​Scripts for Server side
WP 12:​ Deployment
Start date: ​1 May 2020​ ​End date:​ ​1 December 2020
Leader: Oğuz Members involved: Akif, Taylan
Objectives:​ ​Deploy services to the web.
Tasks:
Task 12.1​ ​Decision ​: ​Choosing deployment service such as AWS or Heroku.
Task 12.2 ​Setup ​: ​Setup deployment settings, CLI, pipeline tools, etc. Automating
deployment, if it is possible and free.
Task 12.2​ ​Maintenance
Deliverables
D12.1:​ ​Deployment
D12.2:​ ​Automated Deployment (Optional)
WP 13:​ Web Service Management
Start date: ​1 May 2020​ ​End date:​ ​20 December 2020
Leader: Taylan Members involved: Akif, Oğuz
Objectives:​ ​Managing deployed web service.
Tasks:
Task 13.1​ ​Maintenance
Deliverables
D13.1:​ ​Web Service Management
WP 14:​ Design
Start date: ​24 February 2020​ ​End date:​ ​1 November 2020
Leader: Akif Members involved: Oğuz, Taylan
Objectives: ​Design of the website, mobile app and desktop app. Color palette of the
projects.
Tasks:
Task 14.1​ ​Decision ​: ​Choosing a color palette and coming up with logo ideas
Task 14.2 ​Design ​: ​Designing logo, website, mobile and desktop app, finding icons,
assets, etc.
Deliverables
D14.1:​ ​Color Palette

65

D14.2:​ ​Logo
D14.3:​ ​Website Design
D14.4:​ ​Mobile App Design
D14.5:​ ​Desktop App Design
WP 15:​ Project Management
Start date: ​17 February 2020​ ​End date:​ ​20 December 2020
Leader: Taylan Members involved: Akif, Oğuz
Objectives:​ ​Management of tools, meetings, etc.
Tasks:
Task 15.1​ ​Sprint
Task 15.2​ ​Tools Management
Task 15.3​ ​Meetings
Task 15.4​ ​Teamwork
Task 15.5​ ​Learning
Task 15.6​ ​Enjoy
Deliverables
D15.1: ​Qrder

4.4 Ensuring Proper Team-Work

In order to have successful and reliable systems, teamwork is one of the

significant parts of the job. In our project, we have chosen different leaders for the

separated parts that are Client side, Business side and Server side, according to

knowledge of members. However, that does not mean, members will work in seperate

parts. Every member must collaborate in all 3 parts and one must be the leader. The

reason for applying shared leadership was increasing efficiency of team-work and to

be able to simulate a good leadership experience. A leader must follow projects

related news and technologies, analyze members, control teamwork and make

decisions in favor of the team and the project. Therefore, having separated leadership

will provide all of us to understand each other's skills and performance. The analyzing

members and teamwork will done as in the following:

● Git commits of all members will be followed by the leader of the part.

Therefore the leader would be able to analyze the skill and the performance

of collaborators and be able to support them properly, if needed.

66

● Google Sheets will be used to represent sprint points of members and the

process of the parts separately. Leaders will also follow their parts from there

too. Therefore, performance would be graphed.

● Kanban style boards will be used in parts to create sprints and link them with

the code source.

● GitHub issues will be tracked and solved by team members to have more

involved teamwork.

We do not expect to have the same number of commits from every member

because quality is more important than quantity. However, the average of commit

numbers of each member per week must be consistent with the whole sprint. Slack

will be used as the main communication tool for the project. After every sprint,

performance analyzes will be done by members to increase efficiency in Slack or

Google Hangouts. Therefore, we expect good teamwork in the project.

67

4.5 Ethics and Professional Responsibilities

First of all, global impact of Qrder will be discussed. Qrder will be free to download

and free to use. It’s purpose is making ordering and payment digital. Then, anyone can

download and use it. This application will not discriminate against a certain group of people,

country or any social class. Then , we expect the global impact of the application to make

things faster and easier for restaurants and clients anywhere , anytime.

About economic impact, there is no such dominating system that nearly gets the

whole market share in the food industry. Also we could not find any value that represents total

market value in the digital food industry. But, since our project is small for now, we will not

claim any market share. Instead, if it will be used , we may put ads to earn some money for

our servers. Besides from server cost , Google Play Store and App Store , we do not think that

any constraint that costs us money. However, three constraints above can be affordable for us.

Another impact is Environmental. Qrder will have servers and these servers will

consume energy. It will have a negative impact on environment. But on the other hand,

restaurants may try to introduce their menu digitally. By doing that they will use less paper.T t

has a positive effect on environment. To sum up, Qrder will both positive and negative effect

on environment and we will try to minimize negative effects while on the other hand we will

try to maximize positive events.

Last issue that we thought of is societal impact and data privacy. Qrder will not

publish any private information with 3​rd​ parties as GDPR stated.

68

4.6 New Knowledge and Learning Strategies

In order to come up with a successful system and the project, we need to

know technologies, languages and concepts in the following:

● JavaScript

● React Native

● NodeJS

● Electron / a desktop framework

● Computer Network

● Android Development

● Microservices

● Software Project Management

● Customer Relationship Management (CRM)

All members of the team have some knowledge about skills in the above and

different interestings. Therefore, in order to have good communication and efficiency,

members must learn all skills at some level. Computer Network concept could be

learnt by Bilkent’s course (CS421) and Software Project Management could also be

learnt by Bilkent’s course (CS413). Rest of the technologies, languages and concepts

will be learned by applying the following methods:

● Online Learning (Udemy, Coursera, edX, etc)

● Literature Review (Recommended books in Bilkent’s courses related with the

topic, official documents of technologies)

● Trial and Error (Well written test script could help to catch errors)

“Online Learning” will be the main method of learning these technologies

because web services like Udemy have lots of good and concise courses about

69

technology. “Literature Review” and “Trial and Error” will always be followed

because both are quick and encountered everyday solutions.

5 Glossary

UI - User Interface

DAO - Direct Access Object

UX - User Experience

GDPR - General Data Protection Regulation

JS- JavaScript

SQL - Structured Query Language

JWT - JSON Web Token

REST API - Representational state transfer API

AWS - Amazon Web Services

CRM - Customer Relationship Management

6 References

[1]Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition,

by Bernd Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0.

[2]​Baeldung. “The DAO Pattern in Java.” ​Baeldung​, 21 Mar. 2020,

www.baeldung.com/java-dao-pattern.

[3]“What Is Non-Functional Requirement? Types and Examples.” ​Guru99​,

www.guru99.com/non-functional-requirement-type-example.html​.

70

http://www.guru99.com/non-functional-requirement-type-example.html

[4]“Passport.js.” ​Passport.js​, ​www.passportjs.org/​.

[5]“GraphQL: A Query Language for APIs.” ​A Query Language for Your API​,

graphql.org/.

[6]“Node.js Web Application Framework.” ​Express​, expressjs.com/.

[7]Axios. “Axios/Axios.” ​GitHub​, 7 Mar. 2020, github.com/axios/axios.

[8]Kapetanakis, Matos. “GDPR - Changing the Rules of Identity and Access

Management.” ​ITProPortal​, ITProPortal, 2 Feb. 2018,

www.itproportal.com/features/gdpr-changing-the-rules-of-identity-and-access-managem

ent/.

71

http://www.passportjs.org/

